Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical and transport properties of short-period InAs/GaAs superlattices near quantum dot formation

Identifieur interne : 000802 ( Russie/Analysis ); précédent : 000801; suivant : 000803

Optical and transport properties of short-period InAs/GaAs superlattices near quantum dot formation

Auteurs : RBID : Pascal:02-0507563

Descripteurs français

English descriptors

Abstract

We have investigated the optical and transport properties of short-period superlattices of InAs/GaAs, grown by molecular beam epitaxy, with different numbers of periods (3 ≤ N ≤ 24) and a total thickness of 14 nm. Band structure calculations show that these superlattices represent a quantum well with average composition In0.16Ga0.84As. The electron wavefunctions are only slightly modulated by the superlattice potential as compared to a single quantum well with the same composition, which was grown as a reference sample. The photoluminescence, the resistance, the Shubnikov-de Haas effect and the Hall effect have been measured as a function of the InAs layer thickness Q in the range of 0.33 ≤ Q ≤ 2.7 monolayers (ML). The electron densities range from 6.8 to 11.5 × 1011 cm-2 for Q ≤ 2.0 ML. The photoluminescence and magneto-transport data show that only one sub-band is occupied. When Q ≤ 2.7 ML, quantum dots are formed and the metallic type of conductivity changes to variable range hopping conductivity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0507563

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical and transport properties of short-period InAs/GaAs superlattices near quantum dot formation</title>
<author>
<name sortKey="Kulbachinskii, V A" uniqKey="Kulbachinskii V">V. A. Kulbachinskii</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lunin, R A" uniqKey="Lunin R">R. A. Lunin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rogozin, V A" uniqKey="Rogozin V">V. A. Rogozin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mokerov, V G" uniqKey="Mokerov V">V. G. Mokerov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Radioengineering and Electronics, Russian Academy of Sciences</s1>
<s2>103907 Moscow</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fedorov, Yu V" uniqKey="Fedorov Y">Yu V. Fedorov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Radioengineering and Electronics, Russian Academy of Sciences</s1>
<s2>103907 Moscow</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khabarov, Yu V" uniqKey="Khabarov Y">Yu V. Khabarov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Radioengineering and Electronics, Russian Academy of Sciences</s1>
<s2>103907 Moscow</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Visser, A" uniqKey="De Visser A">A. De Visser</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1018 XE Amsterdam</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0507563</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0507563 INIST</idno>
<idno type="RBID">Pascal:02-0507563</idno>
<idno type="wicri:Area/Main/Corpus">00E643</idno>
<idno type="wicri:Area/Main/Repository">00ED66</idno>
<idno type="wicri:Area/Russie/Extraction">000802</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Binary compounds</term>
<term>Electron density</term>
<term>Gallium arsenides</term>
<term>Hall effect</term>
<term>Indium arsenides</term>
<term>Magnetoresistance</term>
<term>Metallic conduction</term>
<term>Molecular beam epitaxy</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Quantum wells</term>
<term>Semiconductor materials</term>
<term>Shubnikov-de Haas effect</term>
<term>Subband</term>
<term>Superlattices</term>
<term>Thickness</term>
<term>Transport processes</term>
<term>Wave functions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optique</term>
<term>Phénomène transport</term>
<term>Epitaxie jet moléculaire</term>
<term>Epaisseur</term>
<term>Structure bande</term>
<term>Fonction onde</term>
<term>Photoluminescence</term>
<term>Effet Shubnikov de Haas</term>
<term>Effet Hall</term>
<term>Densité électron</term>
<term>Magnétorésistance</term>
<term>Sous bande</term>
<term>Conduction métallique</term>
<term>Indium arséniure</term>
<term>Semiconducteur</term>
<term>Composé binaire</term>
<term>Gallium arséniure</term>
<term>Superréseau</term>
<term>Point quantique</term>
<term>Puits quantique</term>
<term>As In</term>
<term>InAs</term>
<term>As Ga</term>
<term>GaAs</term>
<term>8115H</term>
<term>7321C</term>
<term>7855</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have investigated the optical and transport properties of short-period superlattices of InAs/GaAs, grown by molecular beam epitaxy, with different numbers of periods (3 ≤ N ≤ 24) and a total thickness of 14 nm. Band structure calculations show that these superlattices represent a quantum well with average composition In
<sub>0.16</sub>
Ga
<sub>0.84</sub>
As. The electron wavefunctions are only slightly modulated by the superlattice potential as compared to a single quantum well with the same composition, which was grown as a reference sample. The photoluminescence, the resistance, the Shubnikov-de Haas effect and the Hall effect have been measured as a function of the InAs layer thickness Q in the range of 0.33 ≤ Q ≤ 2.7 monolayers (ML). The electron densities range from 6.8 to 11.5 × 10
<sup>11</sup>
cm
<sup>-2</sup>
for Q ≤ 2.0 ML. The photoluminescence and magneto-transport data show that only one sub-band is occupied. When Q ≤ 2.7 ML, quantum dots are formed and the metallic type of conductivity changes to variable range hopping conductivity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>17</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical and transport properties of short-period InAs/GaAs superlattices near quantum dot formation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KULBACHINSKII (V. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUNIN (R. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ROGOZIN (V. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MOKEROV (V. G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FEDOROV (Yu V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KHABAROV (Yu V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DE VISSER (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Low Temperature Physics Department, Moscow State University</s1>
<s2>119899, Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Radioengineering and Electronics, Russian Academy of Sciences</s1>
<s2>103907 Moscow</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65</s1>
<s2>1018 XE Amsterdam</s2>
<s3>NLD</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>947-951</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000101997930110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0507563</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have investigated the optical and transport properties of short-period superlattices of InAs/GaAs, grown by molecular beam epitaxy, with different numbers of periods (3 ≤ N ≤ 24) and a total thickness of 14 nm. Band structure calculations show that these superlattices represent a quantum well with average composition In
<sub>0.16</sub>
Ga
<sub>0.84</sub>
As. The electron wavefunctions are only slightly modulated by the superlattice potential as compared to a single quantum well with the same composition, which was grown as a reference sample. The photoluminescence, the resistance, the Shubnikov-de Haas effect and the Hall effect have been measured as a function of the InAs layer thickness Q in the range of 0.33 ≤ Q ≤ 2.7 monolayers (ML). The electron densities range from 6.8 to 11.5 × 10
<sup>11</sup>
cm
<sup>-2</sup>
for Q ≤ 2.0 ML. The photoluminescence and magneto-transport data show that only one sub-band is occupied. When Q ≤ 2.7 ML, quantum dots are formed and the metallic type of conductivity changes to variable range hopping conductivity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Fonction onde</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Wave functions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet Shubnikov de Haas</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Shubnikov-de Haas effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Densité électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Magnétorésistance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Magnetoresistance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sous bande</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Subband</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Subbanda</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Conduction métallique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Metallic conduction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Conducción metálica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>7321C</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7855</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>294</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000802 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000802 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:02-0507563
   |texte=   Optical and transport properties of short-period InAs/GaAs superlattices near quantum dot formation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024